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ABSTRACT

The theoretical development and application of
quasilinearization techniques to problems of system
identification are presented. A one-degree-of-
freedom system is used for the examples for the
identification problems. Several numerical experi-
ments are presented that relate the effects of noisy
input data to the accuracy obtained in computing
unknown parameters of the governing differential
equations. Also presented are the application of
quasilinearization to the identification problems of
automobile coasting and parachute dynamics. Con-
clusions from these experiments are included.
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APPLICATIONS OF QUASILINEARIZATION THEORY

TO SYSTEM IDENTIFICATION

By George A. Zupp, Jr. and S. Bart Childs*
Manned Spacecraft Center

SUMMARY

The theoretical development and application of several quasilinearization tech-
niques to system-identification problems are described. Presented in the theoretical
development of the quasilinearization techniques are (1) the definition of system iden-

tification, (2) the development of the Newton-Raphson method for solving nonlinear si-
multaneous algebraic equations, and (3) the extension of the Newton-Raphson method by
Kantorovich to the solution of nonlinear or linear differential equations subjected to
multipoint boundary conditions.

System-identification problems are solved for four one-degree-of-freedom sys-
tems, a linear and a nonlinear oscillator, a free-falling parachute, and a coasting auto-
mobile. Several numerical experiments are presented to relate the effects of noisy data
to the accuracy with which the coefficients and initial conditions of the governing differ-
ential equations can be computed. Experimental data were available for the free-falling
parachute and the coasting automobile. The aerodynamic drag-area parameter was de-
termined in both instances by quasilinearization. Numerical examples are presented
to relate the accuracy of the predicted aerodynamic drag-area parameters to inaccura-
cies in the experimental data for the free-falling parachute and coasting automobile.

INTRODUCTION

The analysis of a physical phenomenon usually starts with the postulation of an
equivalent mathematical model, which is usually in the form of a differential equation
(or equations). In differential-equation form, the coefficients and initial conditions
usually have physical significance, and a knowledge of their values can lead to a better
understanding of the physical phenomenon. Determination of the initial conditions and
coefficients (unknown parameters) of the governing differential equations by "closed
form" analytical methods is not always possible. In certain instances, measured ob-
servation of the phenomenon can be used in determining the unknown parameters. De-
termination of the unknown parameters of governing differential equations by using

*Associate Professor of Mechanical Engineering, University of Houston, Houston,
Texas.



measured observations of the phenomenon is called system identification. This report
presents the development and application of several quasilinearization techniques to
the solution of system-identification problems. Consideration is given to the effect of
"random" noise on the identification of nonlinear systems. Additive noise or bias er-
rors in the data are not considered.

Standard system-identification techniques for dynamics problems commonly rely
on sophisticated instrumentation to measure the state variables necessary to identify
the system. The accuracy to which a state variable can be measured is dependent on
the measuring technique; however, the higher the order of the state variable being
measured, the noisier the measurements usually are. Any estimates of the unknown
parameters, based on experimental data of the system-identification problem, reflect
these experimental errors. Therefore, experimental data of highest accuracy should
be used in the prediction of the unknown parameters of the system-identification prob-
lem.

Two quasilinearization techniques can be used to calculate the unknown param-
eters of the system-identification problems that contain experimental data. These

quasilinearization techniques essentially determine the coefficients and initial condi-
tions of the governing differential equations that "best" satisfy the experimental data.
These techniques are (1) the Newton-Raphson method for solving sets of nonlinear al-
gebraic equations, which are the solutions to the governing differential equations, and

(2) the Newton-Raphson-Kantorovich method for solving system-identification problems
for which closed-form solutions of the governing differential equations are not possible.
Ideally, either technique reduces the instrumentation requirements to selection of the
state variable that can be measured most accurately.

The application of the quasilinearization techniques is illustrated by identifying
the unknown parameters of several one-degree-of-freedom systems. The examples
presented apply to the dynamics of a linear and a nonlinear oscillator, a free-falling
parachute, and a coasting automobile. Several numerical experiments are presented to
relate the effects of noisy boundary conditions to the accuracy with which the coeffi-
cients and the initial conditions of the governing differential equations can be computed.

SYMBOLS

A, B, C, D, a differential-equation coefficients

C coefficient matrix

C-S aerodynamic drag-area parameter

dT inversion vector of the coefficient matrix and a

T
E C C

T-r= c d
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q

g acceleration of gravity, ft/sec

J Jacobian matrix

L number of boundary conditions

M vehicle mass, slugs

n index

P number of dependent variables in Z

R(x) residue-equation vector

R (x) residue equation of the form R (x) R fx,, x,,, x 0
m’ m- m\ 1’ V m/

S individual boundary conditions

t time, sec

x displacement (height), ft

Xp, Xp, YQ, YQ, u, ,, X state variables

y dependent condition variable

Z vector of dependent variables Z

z state-variable component

a parameter specified to ensure satisfaction of the boundary con-
ditions

p. rolling friction coefficient

Q

p air density, slugs/ft

Subscripts:

0 initial

i, k, m, n indices
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Superscripts:

(0) particular solution

(i) homogeneous solution, i 1, 2, 3

T transpose

Operators:

( ) first derivative with respect to time

(" ) second derivative with respect to time

SYSTEM-IDENTIFICATION TECHNIQUES

System identification is the process of fitting the governing differential equations
to a given set of boundary conditions. The process involves the determination of the

coefficients and initial conditions that satisfy the given set of boundary conditions. The

coefficients and initial conditions of the differential equations are referred to as the un-

known parameters of the mathematical model.

To illustrate the concept of system identification, the example is considered in

which the governing differential equations are

^ ay (1)

and

^ 0 (2)

where a is an unknown parameter. The solution of equation (1) can be determined by
straightforward integration. If the range of interest is from zero to t, then the solu-
tion to the governing differential equation can be written as

at /o\y YQG (3)
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where y,, is the initial condition. If the desired solution must satisfy specified bound-

ary conditions such as y y- at t t- and y y at t tq, then
1 1 ^ z

^ r^r ^v1 (4)
-1 -2 5^

and

’^ "-(-A11^) (5)

Thus, system identification is straightforward for a system that can be described by a
differential equation as simple as equation (1). Although equation (1) is linear, the
identification problem is nonlinear.

In a more complex differential equation such as

4 +^ 0 (6)
dt"

the apparent solution

y A sin Xt + B cos Xt (7)

where A and B are arbitrary parameters, is again straightforward. If at t 0,
y YQ and y y^, then

A^and

B YQ (9)
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Equation (7) can now be written as

y y cos Xt + sin Xt (10)

To determine y,,, y^, and X, the following three independent boundary conditions for

y(t) are necessary:

1. y y^ at t t^
2. y y^ at t tg

3. y yg at t tg

Use of the data points tp tg, and tg and equation (10) gives

^0 ^y^ YQ cos Xt^ +-^- sin Xt^

y^ Yp cos Mg + ^j- sin Xtg > (11)

^0
y3 yQ COS Xtg + -y Sin Xt3 J

which are independent equations if the spacing of the data points is properly chosen.

The presence of the sine and cosine functions indicates that this set of equations is

nonlinear. To determine y,,, y,,, and \, an iterative technique (such as the Newton-

Raphson method discussed in another section of this report) for solving nonlinear equa-
tions is required.

The governing differential equations are always written as a set of first-order

equations, and unknown constant parameters are incorporated by adding a null equation.
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Thus, equation (6) is written as

dy zdF 2

^ -^y > (12)

dl - -/

where

S X2 (13)

From the discussion of equations (1) and (6), it is obvious that the problem of
system identification is difficult when attempted analytically. With the aid of the digital
computer, numerical techniques are available for the solution of complicated system-
identification problems. A discussion of quasilinearization techniques and their appli-
cation to system identification are presented in the following sections of this report.

QUASILINEAMZATION TECHNIQUES

The concept of quasilinearization is presented in the theory of dynamic program-
ing (ref. 1). Quasilinearization techniques provide a systematic, iterative approach
for solving linear and nonlinear algebraic and differential equations. Taylor and Ilift
(ref. 2) have successfully applied a Newton-Raphson method to the solution of the
system-identification problem of determining aerodynamic stability derivatives from
flight data. Several other methods are being used in system-identification problems;
examples are given in references 3 and 4.

Newton-Raphson Method

The theoretical development of the Newton-Raphson method is based on a Taylor-

series expansion of several variables. For example, the vector R(x) represents a set

7
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of residue equations of the form

R^(x) R^,X3, ,x^) 0 -^

R3(x) R^,X3, ,x^) 0

’ (14)

^^ ^(^^’ ^m) 0
>

Expanding R(x) in a Taylor series about an approximate solution vector x obtained

in the nth iteration gives

[R(x)]^ [H< . [^] (x^) . W

If x" x is sufficiently small, the higher order terms of equation (15) can be
n+1 n

neglected. Thus

[50]^ [(C)] . pg] ^ ^ (ie,

In the final iteration, the residue vector R(x) must become zero for the vector x to
be a solution; equation (16) is then written as

[^n -^^-n) 0 t17)

n
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or as

BR,(x) BR/x) BR/x)"
R ^

1 1
x

"r^ ax, ax, ax i, n+i ’’i^x m

aRg(x) aR3(?) apg(x)

^^^ ax, ax, ax ^2, n+i ^ n
1 1X1

+ 0 (18)

9R (?) 9R (x) BR (x)
R (?) m n^ m^

^ ^m Bx- BXn Bx m, n+1 m, n

in matrix form.

Denoting the Jacobian matrix by J

BR.(x) BR^(x) BR^(x)
^q- axg ^x^-

BRg(x) BRg(?) BRg(x)
Bx- Bx, Bx

1 2 m
J^ (19)

BR^(x) BR^(x) 9R^x)
^l ^2 ^m. -.-

ji~~H.
n

equation (18) is written in vector form as

^i ^n ^r^L <20)

9



Equation (20) is the recurrence relation for the Newton-Raphson algorithm, which con-

verges rapidly when the initial guess vector ? is in the convergence space. Problems
arise when irregularities occur in the individual equations. The Newton-Raphson meth-
od has, for many problems, the properties of quadratic and monotone convergence
(ref. 5).

In an application of the Newton-Raphson algorithm, the nonlinear algebraic equa-
tions (eq. (11)) are written as

^0 ^R-(x) Yp cos Xt. +-. sin \t y^ 0

R^x") Yp cos Xtg + -^ sin Xtg y^ 0 > (21)

YO
Rg(x) YQ cos Xtg + sin Xtg yo 0

The Jacobian matrix is

E;os XtJ h- sin XtJ -fynti + -^)sin Xt. +-.- cos Xt.
IJ |_X IJ [_ \^ 0 1 ^^/ 1 X 1J

E -i ri 1 r / yn\ ^0^9 ’i
.os Xt^J ^ sin Xt^J [- ^t^ + ^sin Xt^ + -^ cos Xt^J J (22)

r 1 fi 1 r / yo^ yot3 1[cos Xtgj ^ sin Xtg] ^- ^ptg + ^sin Xtg + ^- cos Xtgj

Using the recurrence equation (eq. (20)), ~x and R(x) are defined by

YO RI^)
x Yp R(x) R^x^) (23)

X Rjx)

10



Two initial guess vectors for x are selected to show the convergent properties of the
problem. Values of y, y.,, and X are presented in table I for each iteration of the

initial estimate vectors of (0, 1, 1) and (0. 5, 0. 5, 0. 5). The following are boundary con-
ditions to be satisfied:

1. y- 1. 00 at t- 0. 0

2. y 1. 36 at t 0. 5

3. yg 1. 38 at tg 1. 0

TABLE I. NEWTON-RAPHSON ITERATIVE SOLUTION TO EQUATIONS (11)

State Initial ^^________Iteration__________________
variable guess 1 2 3 4 5

YQ 0. 0000 1. 0000

YQ 1. 0000 1. 0000

X 1. 0000 1. 0000

YQ 0. 5000 0. 98409 0. 741428 1. 001728 0. 9999 1. 0000

YO 5000 1. 0000 1. 00000 1. 00000 1. 0000 1. 0000

X 5000 1. 0000 92949 1. 00861 1. 0000 1. 0000

Newton-Raphson-Kantorovich Method

The Newton-Raphson-Kantorovich method is an extension of the Newton-Raphson
method to "function space" (ref. 6). The concept of function space, as explained by
Lanczos (ref. 7), involves the replacement of a continuous function by a vector so that
the vector describes the continuous function by a set of discrete points.

The Newton-Raphson-Kantorovich method involves the solution of a set of linear
differential equations with varying coefficients. In this set of equations, the solution of
the linear differential equation converges, under appropriate conditions, to the solution
of the nonlinear differential equations. Since the equations are linear and the principle
of superposition applies, the boundary conditions can be satisfied at each iteration.

11

I-



The development of the Newton-Raphson-Kantorovich algorithm starts with the

consideration of the first-order vector differential equation

i=T(Z,t) (24)

where Z is composed of P dependent variables, and t is the independent time vari-

able. Expanding equation (24) in function space gives

^-^’^[’y] (^i ^ + <25’
n

Neglecting the higher order terms and rewriting gives

Z f-f(Z, t)1 + 9f^ Z , [3^ Z (26)
n+1 L /! n ^ n+1 L 9Z -I n

n n

Equation (26) is now written in the form

Z A Z + B (27)
n+1 n n+1 n

where

^ [^l ^ [r^L pl^ (28)

The vectors Z and Z are linear with respect to the n + 1 solution. The A and

B terms in equation (27) are known functions that are calculated from the known nth

solution or from the previous iteration. In the n + 1 solution, the functions A and

B reflect the nonlinearity of the original differential equations. By using the recur-
n

rence relation (eq. (27)), successive approximations are made to the nonlinear solu-

tions until the desired accuracy is achieved.

12



Equation (27) is linear with varying coefficients and is easily solved through su-
perposition. The particular solution is a solution of equation (27) with appropriate ini-

tial conditions. The vector Z^ (t) denotes this particular solution. The homogeneous

solutions are governed by

^l^ ^n^ 1 < ’ < p (29)

where P is the number of homogeneous solutions. The initial conditions for the homo-
geneous solutions are selected so that the solutions will be linearly independent. The
total solution of equation (27) is

P

Z (t) Z^ (t) + ^ff .Z^, (t) (30)
n+1- n+1 / J i n+1-

i=l

where the a. are specified to ensure satisfaction of the boundary conditions. The

particular solution is Z’ ’-(t), and the homogeneous solutions are the Z" (t).

The initial conditions for the particular and homogeneous solutions should show
all the information known about the desired solution. Thus, the initial condition (t 0)
for the particular solution is

P

^n0^0 z w^ +^aizn(i}w (31)

i=l

where the right-hand side of equation (31) is known from the previous iteration. The
initial conditions for the homogeneous solutions are designated to be approximately the
same, except that arbitrary perturbations of elements of these vectors are made to en-
sure that

det(z^(t) ^(t^ O (32)

These strategies ensure that a. 0 as convergence is approached and therefore that

a straightforward indication of convergence is obtained.

13



The number of boundary conditions is denoted by L. The individual boundary
conditions are denoted by S, (1 < k < L). These boundary conditions are placed on

K

elements of Z (t) and are satisfied by

^ [C^E^i^)] l s k s L (33)

i=l

where t, is the time at which S, is measured.

If L P, the following matrix equation yields the a. upon inversion of the coef-

ficient matrix.

C^ d (34)

where

^i [^iCi)] <35’

defines the elements of the coefficient matrix. The elements of the right-hand vector
are defined by

d! s! [C’lCl)] <36’

If L > P and all boundary conditions are to be satisfied in a least-squares sense, the

following matrix equation

Eo-= ? (37)

14



is used, where

T "\
E C C

^ (38)
T-

e Cld )

When the appropriate matrix-inversion technique is used, the a’s are easily deter-
mined from equation (37).

Once the vector a is determined, the solution and initial conditions for the non-
linear differential equations are updated for the next iteration. The updated solution
vector is calculated by using equation (31). The updated initial conditions are also cal-
culated by using equation (31) and letting t 0. The process is repeated with the up-
dated solution and initial conditions until the desired accuracy is achieved.

In an application of the Newton-Raphson-Kantorovich algorithm, the second-order
differential equation is written as

x + ^x 0 (39)

where the observed responses or boundary conditions are

1. x S. at t t

2. x Sg at t tg

3. x Sg at t to

The initial conditions x, x,,, and ^ are now determined in order to satisfy the speci-

fied boundary conditions. Equation (39) is reduced to two first-order differential equa-
tions.

x u (40)

and

u -^x (41)

15



Since f, is a constant

^ 0 (42)

Three first-order differential equations are then formed.

’x’ ’x’ Z, Z -\

Z u Z u Zg -Z^Zg y. (43)

A A ^S 0 J
Equation (39) is expanded according to equation (27).

x u (44)
n+1 n+1

^n+l -^n ^(^+1 ^5 M^n+l ^n) -^n+l ^n+l^ + Vn (45)

and

’^1 (46)

(Although equation (39) is linear, the same procedure applies if equation (39) is nonlin-

ear. The procedure is independent of whether or not a closed-form solution exists.

Before particular and homogeneous solutions can be determined, an initial guess must

be made for the vector [Z(t)],

^O"

[Z(t)]^ Uy (47)
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3.0 1- An initial guess must also be made for the
specified boundary condition solution of the governing differential equa-

tion (eq. (39)). A first approximation can
2-5 be made by using linear interpolation be-

tween the specified boundary conditions, as
,_--- shown in figure 1. The assumed solutions

^/--"’’V and initial conditions are needed to calculate

^’’" ^-z^\) the n subscripted terms in equation (27).
1.5 ^-"^ /-zllt"^tl

^^^-""-- """"""----.y By using the initial conditions that re-

^ ^^" ""’^^ suit in linearly independent solutions, the
| i-’^- ---^^------\-’-~"\~~~~~1 homogeneous and nonhomogeneous equations
| ’~"~^-^" \ ^zi11’!!) are numerically integrated over the time in-

^-"’’" ’’’"’\. ’"(t) terval of interest such as t- to to.

-^ \ ^ The initial conditions for the nonho-
\ mogeneous solution (eq. (27)) are

Linear approximation / \
llie initial solution __f \

\ ’XQ "1. 00000’

’"’"O 0.25 0.50 0’75 1.00 ^i ’’50 Z ’(0) UQ 1. 00000 (48)
Time,I,

Figure 1. The first iterative solutions to -^ -1- O00^.
equations (27) and (29) for the initial con-
ditions defined in equations (48) and (49). The initial conditions for the homogeneous

solution (eq. (29)) are

’0. 10000" ’1. 00000" ’1. 00000"

Z ^\0) 1. 00000 Z ^^O) 0. 10000 Z ^(0) 1. 00000 (49)

_1. 00000_ _1. 00000 0. 10000

From equation (32), it is obvious that these initial conditions result in linear independ-
ent solutions. The diagonal elements of the matrix of initial conditions for the homoge-
neous solutions are perturbed by a factor of 0. 10000 for each iteration to ensure linear
independence of the solutions. The perturbation factor is a specified parameter that
can vary in magnitude depending on the type of problems being solved. The solutions
to equations (27) and (29) for the previously discussed initial conditions are shown in
figure 1. To ensure fast convergence, the selection of the starting values for the ini-
tial conditions should reflect the best available values of the initial conditions. By
using equation (33), three linear independent equations are formed.

17
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s! ^’iCi) + "i^iCi) + ^’iCi) + "s^iCi)

^ C’l^) ^!^^^) 4’ ^2^) ’^ ^2^) > t50)

^ e’ica) + "As) + ^^(y + "s^ics)
^

tf the boundary conditions are specified displacements, the vector equation (50) is re-
duced to a scalar equation. The scalars are the displacement component of the vector

Z. In this instance, the following specified boundary conditions are displacements:

1. S. 1. 00 at t, 0. 00

2. Sg 1. 00 at tg 1. 00

3. S -1. 00 at t 1. 50

When the displacement component of the vector Z is used as specified in figure 1, the

three linear independent equations (eq. (50)) are reduced to

1. 00 1. 00 + 0. lOo, + l. OOa, + l. OOa,, ^l

1. 00 1. 38 + 0. 89ff + 0. 62ff + 1. 89a ^ (51)

-1. 00 1. 04 + 1. Ola. + 0. 17Cg + 2. 14ffg

Once the homogeneous and nonhomogeneous solutions have been determined, a standard

matrix-inversion technique is used to determine the unknown Q’s. After the ff’s have

been determined, the solution to the governing differential equation is updated by using

equation (31). The initial conditions and coefficients are also updated by using equa-
tion (31). The process is repeated with the updated solution and initial conditions until

convergence has been achieved. Values for x,,, XQ, and ^ are presented in table II

for each iteration on the solution to illustrate the convergent characteristics of this al-

gorithm.
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TABLE n. NEWTON-RAPHSON-KANTOROVICH ITERATIVE

SOLUTION TO EQUATION (39)

State Exact Initial Iteration

variable solution guess 1 2 3 4 5 6

x^ 1. 00000 1. 00000 1. 00000 1. 00000 1. 00000 1. 00000 1. 00000 1. 00000

x^ 1. 20924 1. 00000 .684269 1. 03947 1. 19223 1. 20907 1. 20924 1. 20924

, 4. 38681 1. 00000 2.46593 3. 85735 4. 33703 4. 38633 4. 38681 4. 38681

APPLICATIONS

The quasilinearization techniques for solving system-identification problems can
be applied to many categories of dynamics and related fields. The examples discussed
in this report are confined to problems involving the dynamics of several one-degree-
of-freedom systems. The numerical examples are designed to relate the accuracy of
the observations of the pertinent state variable to the accuracy to which the coefficients
and initial conditions of the governing differential equation are calculated. Specific ap-
plications of a quasilinearization technique to the system-identification problems of
parachute dynamics and automobile coasting dynamics are discussed.

Numerical Examples

The following nonlinear ordinary second-order differential equation is used for
one set of numerical examples to relate the effect of noisy boundary conditions on the
determination of the coefficients and initial conditions.

^ A^By .C^Dy3. ,) (52)

The independent variable t is time, and the dependent variable y is displace-
ment. The initial conditions on y and dy/dt and the coefficients A, B, C, and D
are selected so that oscillatory motion results.

19
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If the coefficients C and D are set equal to zero, equation (52) reduces to the

linear ordinary second-order differential equation

d y + A dy-^ By 0 (53)
dt2 dt

which will be used as the governing differential equation for the second set of numerical

examples.

Equation (52) is analogous to a spring-mass system with linear and nonlinear

properties of spring and damping forces. To develop precision data for the displace-
ment history for equations (52) and (53), values for the coefficients and initial condi-
tions were assigned and numerically integrated (ref. 8). The displacement data

developed by numerical integration have six-digit accuracy. Noise was superimposed
on the integrated displacement data by rounding off the six-digit-accurate displacement
values to four- and two-digit accuracy. By making the numerically integrated data
analogous to experimentally measured data, the Newton-Raphson-Kantorovich method
is applied to the problem of identifying the differential-equation coefficients and initial

conditions which best fit the experimental data. The degrees of accuracy of the numer-
ically integrated data are assumed to be analogous to experimental error.

Comparisons are presented in table in for the initial conditions and coefficients

computed by using quasilinearization for the nonlinear differential equation (eq. (52)).

TABLE HI. TABULATED VALUES OF INITIAL CONDITIONS

AND COEFFICIENTS FOR EQUATION (52)a

State variable Exact 6-digit 4-digit 2-digit
or coefficient solution accuracy accuracy accuracy

y 0. 00000 -0. 000001 0. 000010 -0. 001527

y 1. 00000 1. 00002 999846 1. 02469

A 10000 100027 100171 059754

B 3. 00000 3. 00015 2.99986 2.99733

C 20000 199912 199583 303364

D 4. 00000 4. 00063 4. 00348 4. 03972

fourteen specified displacements obtained every 0. 5 second from t 0 to

t 6. 5.
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In this computation, six-, four-, and two-digit accuracy was used on the specified dis-
placement history. The specified displacements were obtained at intervals of 0. 5 sec-
ond from t 0 to t 6. 5 seconds. For example, if the boundary conditions in
in table ni are specified to four-digit accuracy, the coefficient A is calculated to be
0. 100171, as compared to the exact value of 0. 100000 for A. Similar comparisons for
the linear differential equation (eq. (53)) are presented in table IV.

TABLE IV. TABULATED VALUES OF INITIAL CONDITIONS

AND COEFFICIENTS FOR EQUATION (53)21

State variable Exact 6-digit 4-digit 2-digit
or coefficient solution accuracy accuracy accuracy

YQ 0. 0000 0. 000000 0. 000000 -0. 001870

YQ 1. 00000 1. 00002 1. 00001 1. 00012

A 100000 099999 100030 102050

B 3. 00000 3. 00015 3. 00015 3. 00104

Fourteen specified displacements obtained every 0. 5 second from t 0 to
t 6. 5.

The data in tables in and IV indicate that the initial conditions are calculated to
the same accuracy as the specified data for the examples studied. The coefficients,
however, have the same accuracy as the specified data for the linear differential equa-
tion (eq. (53)) and one less digit of accuracy for the nonlinear differential equation
(eq. (52)). This difference in accuracy is probably attributed to the higher ratio of the
specified displacement data to the differential-equation parameters (initial conditions
and coefficients). The time span for which the displacement data are specified also in-
fluences computed parameter accuracy.

Parachute Dynamics

The Newton-Raphson-Kantorovich method of solving system-identification prob-
lems is also applied to parachute dynamics. Parachutes are used primarily as aero-
dynamic deceleration devices. The normal sequence of parachute deployment is
ejection from the payload, inflation or opening (which may be controlled or uncon-
trolled), and subsequent descent.

The parachute dynamics during inflation are difficult to model mathematically
because of changing parachute geometry, virtual mass effects, et cetera. The descent

21



dynamics after the parachute has stabilized from the inflation process are more

straightforward. The dynamics of the parachute trajectory are approximated with good
accuracy by the second-order nonlinear differential equation

9 2
d x p P f^A a- (54)
"j ^D^ mVdn g V04/
dt

where x is displacement (height) in feet, t is time in seconds, M is payload mass

in slugs, C^S is a drag-area parameter in square feet, p is air density in slugs per

2 2
cubic feet, g is acceleration of gravity in feet per second per second, d x/dt is

vehicle acceleration in feet per second per second, and dx/dt is vehicle velocity in

feet per second.

Experimentally measured values of position versus time for a free-falling, fully
inflated parachute are presented in table V (ref. 9). These data are for the time span
following the parachute inflation process. During this period, the parachute payload

system decelerates from the opening velocity to the steady-state velocity, which occurs

when aerodynamic drag is equal to parachute payload weight. The fall distance for

which the parachute data are taken is approximately 1000 feet. Because of the small

change in atmospheric density during this period, the density is assumed constant.

With equation (54) as the governing differential equation, the coefficient and ini-

tial conditions are determined by using quasilinearization so that the solution to the

differential equation satisfies the experimental displacement data in a least-squares
sense (minimizes the square of the deviation). The predicted values of parachute dis-

placement, velocity, acceleration, and drag-area parameter CpS are presented in

table V. The values selected for the drag-area parameter and initial conditions corre-
late generally within 1 foot of the measured trajectory for a free-fall distance of ap-

proximately 1000 feet.

Several numerical experiments are presented that relate the accuracy of the cal-

culated coefficient and the initial conditions of the differential equation to the accuracy
of the specified boundary conditions (experimental data). The following differential

equations and initial conditions are assumed and numerically integrated to develop pre-
cise data for the boundary conditions.

^ + 0. 24708 x lO^fe) 32. 17 (55)
dt

(^\ 443. 2 ft/sec (56)
Wt^O
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x^o 0. 0 (57)

Values of displacement and velocity are presented in table VI for the solution of equa-
tion (55). The tabulated values have six-digit accuracy.

TABLE V. PARACHUTE DATA^

C^S 147. 78 ft2, p 0. 1354 X 10~2 slug/ft3,
M 405 slugs

Predicted
Experimental Predicted Predicted

Time, acceleration,
displacement, displacement, velocity,

sec ft ft ft/sec ft/sec

0. 0 0. 0 0. 0 443. 20 -16. 35

2 87. 5 88. 3 440. 00 -15. 66

4 176. 0 176. 0 436. 94 -14. 99

6 263. 0 263. 1 434. 00 -14. 36

8 349. 2 349. 6 431. 19 -13. 76

1. 0 434. 7 435. 6 428. 50 -13. 19

1. 2 520. 8 521. 0 425. 91 -12. 64

1. 4 606. 7 606. 0 423. 43 -12. 12

1. 6 691. 7 690. 4 421. 06 -11. 62

1. 8 775. 0 774. 4 418. 78 -11. 15

2. 0 857. 6 857. 9 416. 60 -10. 70

2. 2 940. 2 941. 0 414. 50 -10. 27

^hese data are a portion of an overall parachute payload trajectory in which
several parachutes were deployed at different time sequences. These data were se-
lected because the parachute payload dynamics can be approximated by equation (54).
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TABLE VI. SOLUTION TO EQUATION (55)

Time, Displacement, Velocity,
sec ft ft/sec

0. 0 0. 000 443. 200

2 88. 317 439. 998

4 176. 008 436. 932

6 263. 099 433. 996

8 349. 615 431. 183

1. 0 435. 580 428. 487

1. 2 521. 017 425. 903

1. 4 605.948 423. 426

1. 6 690. 394 421. 050

1. 8 774. 375 418. 771

2. 0 857. 909 416. 584

2. 2 941. 014 414. 486

The numerically developed data in table VI were rounded off to simulate the ex-

perimental error. The results of using data of +/-0. 001-, +/-0. 1-, and +/-5-foot displace-
ment or position accuracy to determine the accuracy of coefficients and initial

conditions are presented in table VII.

The data indicate, for the velocity and time span studied, that the coefficient of

the velocity-squared expression and initial velocity can be calculated to within 1 per-
cent for 5-foot position errors. By extrapolating this value to the parachute experi-
mental data, the drag-area parameter C^S can be calculated to within 1 percent if the

experimental position error is within 5 feet.
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TABLE Vn. EFFECT OF NOISY BOUNDARY CONDITIONS ON VALUES

OF DIFFERENTIAL-EQUATION PARAMETERS

O^)2--"]
Specified boundary-condition accuracy, ft

ParamotcT- dXaCtParameter

^^ ^ ^ +/-0. 1______+/-5.0

fdx) 443.200 443.200 442.830 443. 175

Wt^______________________________________________________________
C- 0. 2470800 x 10’3 0. 2470818 x 10’3 0. 2453796 x 10’3 0. 2466957 x 10’3

Coasting-Automobile Dynamics

The dynamics of a coasting automobile are primarily influenced by two externally
applied forces: aerodynamic drag and rolling friction. The aerodynamic drag is con-
sidered to be a function of the square of the relative velocity of the automobile (relative
to the wind). Rolling friction forces are assumed to be a function of the automobile
weight.

The governing differential equation for a coasting automobile for a no-wind con-
dition is

^^t^^ <">

where p. is the rolling friction coefficient.

The differential equation for the coasting dynamics of an automobile is similar to
the differential equation for a free-falling parachute. If j-i -1, equation (58) is identi-
cal to equation (54). The system-identification problem of the automobile includes the
determination of rolling friction coefficient p.

The experimental data for the coasting automobile are in the form of a velocity-
time history (ref. 10). Table vm presents experimentally measured values of velocity
versus time for a coasting automobile. By using equation (58) as the governing differ-
ential equation, the coefficients and initial conditions are determined such that a
"best" fit on the experimental data was obtained. Also presented in table VIII are the
values of velocity, displacement, drag-area parameter C,-.S, and rolling friction coef-

ficient (.1 predicted by ’quasilinearization. To relate the accuracy of the predicted
coefficients and initial conditions to the accuracy of the specified boundary conditions,
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the differential equation and initial conditions

9 2
d x

+ 1. 303065 x lO"4^^) + 0. 6671862 0 (59)
dt- v /

X^Q 0. 0 ft (60)

te) 116. 90158 ft/sec (61)
V^/t^O

are numerically integrated. The integrated values of displacement and velocity are
considered to be analogous with experimental data of six-digit accuracy.

TABLE Vm. COASTING-AUTOMOBILE DATA

x Q 0, (dx/dt)^Q 116. 90158 ft/sec, CpS 8. 80719 ft2,
p 0. 00238 slug/ft3, H 0. 0207201, M 80. 43 slugs

Predicted Predicted
Time, Experimental measured

velocity, ft/sec displacement, ft
sec velocity, ft/sec /gx ^

0 117. 3 116.902 0. 000

5 104. 9 105. 520 555. 369

10 95. 3 95. 604 1057. 641

15 87. 3 86. 852 1513. 350

20 79. 2 79. 038 1927. 725

25 71. 9 71.990 2305. 007

30 65. 7 65. 574 2648. 678

35 59. 8 59. 684 2961. 622

40 54. 0 54. 235 3246. 250

^hese numerically integrated values have six-digit accuracy.
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Numerical experiments were conducted to determine the influence of experimental
error on the predicted differential-equation coefficient and initial conditions. Two types
of numerical experiments were conducted: in one type of experiment, the velocity data
were used as the specified boundary condition, and in the other type of experiment, the
displacement data were used as the specified boundary conditions. These experiments
were designed to compare the accuracy in computing differential-equation coefficients
and initial conditions for specified boundary conditions of different orders. The exper-
imental error was developed by rounding off the integrated data to accuracies of 1 and
5 ft/sec for velocity and to accuracies of 1, 5, and 10 feet for displacement.

Values of initial conditions and coefficients are presented in table IX for each set
of data at a given experimental error. For a +/-5-foot displacement error, the coeffi-

_4
cient C is computed to be 1. 30469 x 10 which is within 0. 12 percent of the exact
value of C

An error of +/-10 feet in experimental displacement data results in approximately
the same accuracy in computation of the differential-equation parameters as a +/-5-ft/sec
error in the experimental velocity data. An error of +/-5 feet in the displacement data
gives better accuracy in the computed differential-equation parameters than a +/-1-ft/sec
error in the velocity data.

27



M
00

TABLE IX. EFFECTS OF NOISY BOUNDARY CONDITIONS ON CALCULATED PARAMETERS OF DIFFERENTIAL EQUATION (58)

^’’’^(d^) +C2= 0 P 0. 00238 slug/ft3, CpS= 2C^M/p.
M 80.43 slugs, fjt CJf,

Specified boundary-condition accuracy

Parameter Exact value ________________________Displacement________________________________________Velocity________________
Percent Percent Percent Percent Percent

+/-1 ft +/-5 ft +/-10 ft +/-1 ft +/-5 ft

_____________________(a)_____________ (a)_____________ (a)_______________W_______________ (a)

(dx/dt) 116.902 116.840 0.053 117.147 0.21 117.402 0.42 117.124 0.19 115.534 1.18

ft ’sec

C. 1.30307 10’4 1.28490 10-4 1.41 1.30469 10’4 0.12 1. 39411 10’4 6.53 1.27184 10’4 2.45 1.34169 lO’4 5.6S

C, 0.667186 0.679847 1.86 0. r,78837 1.72 0.608339 9.67 0.690197 3.33 0.58628’’’ 13.80

C S, ft2 0.509086 0.50199 1.41 0.509723 0.12 0,544657 6.53 0.496900 2.45 0.539806 5.69

^ 2.07201 10"2 2. 11133 10’2 1.86 2. 10819 10’2 1.72 1.88925 10’2 9.67 2. 14347 10’2 3.33 1.820-7 10’2 13.80

apercenterror= ’-co^le xlo-2



CONCLUDING REMARKS

The quasilinearization techniques provide a systematic iterative approach to fit-
ting a governing differential equation (or equations) to a set of measured observations.
The advantage of this technique in system identification is that it permits the selection
of the state variables that describe the measured observation whether the observation
is displacement, velocity, or any other variable. The measured observations can be
made from the standpoint of economy, accuracy, or convenience. In terms of economy,
this technique may reduce instrumentation requirements.

The accuracy of the predicted differential-equation coefficients and initial condi-
tions is a function of experimental error-in the measured observations. Because of the
nature of measuring devices, the higher the order of the state variable (such as velocity
and acceleration) being measured, the noisier the experimental data. The quasi-
linearization technique allows the selection of the state variable with the least noise or
the lowest order, which is displacement in dynamics problems.

The quasilinearization techniques are applied to the identification of several one-
degree-of-freedom systems. Linear and nonlinear systems are used to relate the ac-
curacy of the differential-equation coefficients and initial conditions for a given
experimental error in boundary conditions. The data indicate that the initial conditions
can be calculated to the same accuracy as the specified boundary conditions (e. g. two-
digit-accurate boundary conditions for two-digit-accurate initial conditions), whereas
the computed coefficients have less accuracy than the specified boundary conditions.

Specific system-identification problems of the free-falling parachute are dis-
cussed. Results indicate, for the conditions studied, that the parachute aerodynamic
drag-area parameter can be calculated with good accuracy during a transient, free-
falling condition. The numerical examples indicate that the aerodynamic drag-area
parameter can be calculated to +/-1 percent when errors in parachute position data are
as large as 5 feet for the parachute trajectory studied.

Experimental data on the coasting automobile are presented in the form of a ve-
locity history. The system-identification problem for a coasting automobile includes
determination of the initial conditions, aerodynamic drag-area parameter, and rolling
friction coefficient. Numerical experiments were conducted to relate errors in exper-
imental velocity histories and displacement histories to the predicted accuracy of the
differential-equation parameters. The results indicate that determination of the
differential-equation parameters is almost twice as accurate when displacement data
rather than velocity data with the same order of accuracy are used.

National Aeronautics and Space Administration
Manned Spacecraft Center

Houston, Texas, April 25, 1969
914-13-20-17-72
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